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Entropy in (1 1 1)-Dimensional Black Hole
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The Klein±Gordon equation and Dirac equation are solved in the backgrounds
of a (1 1 1)-dimensional black hole with ’ tHooft and ª quasiperiodicº boundary
conditions, respectively. The corresponding entropies of bosons and fermions are
calculated; the divergence in the fermionic entropy has the same form as that in
the bosonic one, except that the coefficient is different.

1. INTRODUCTION

Entropy can be described both in a thermodynamic sense and in terms

of a counting of states. In the traditional thermodynamic sense, the area of
the event horizon of a black hole is interpreted as its thermodynamic entropy,

the surface gravity on the horizon is proportional to the Hawking temperature,

and the classical Bekenstein±Hawking entropy is proportional to the area of

horizon and satisfies all thermodynamic laws (Bekenstein, 1972, 1973, 1974;

Hawking, 1975; Kallosh et al., 1993). The matter field fluctuations originating
from the black hole background is an interesting problem (’ tHooft, 1985;

Susskind and Uglum, 1994). ’ tHooft calculated the number of scalar particle

states surrounding a black hole in a so-called ª brick wall modelº and found

the quantum scalar field fluctuation about the Hartle±Hawking temperature.

By ignoring the contribution from the system surrounded by vacuum, he

gave the following one-loop contribution to the entropy:

Sq
sch 5

8 p 3

45

(2M )4

h b 2

where b is the reciprocal of the Hawking temperature, and h is a cutoff.
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Here Sq
sch is regarded as a geometric quantity (Solodukin, 1995a) Ah /48 p e 2,

with e the ultraviolet cutoff, and e 2 5
15

2 d 2; d 5 2 ! rh h is the proper distance

from the horizon rh to rh 1 h. A different but actually equivalent approach
(Callan and Wilczek, 1994; Kabat and Strassler, 1994) is adopted by Bombelli

et al. (1986) and Srednicki (1993). In ’ tHooft’ s brick wall model, as well as

in Sloldukhin’ s use of the Gibbons±Hawking Euclidean path integral approach

(Gibbons and Hawking, 1977) to study the quantum corrections to the entropy

of a Schwarzschild black hole starting with the one-loop effective action of

scalar matter, there exists a logarithmic divergence , log( L / e ), where L is
the infrared cutoff. The divergence in entropy arises because of an infinite

number of states which appear on the horizon. In quantum mechanics, the

geometric entropy satisfies the following assumptions: If particles are scalar

bosons obeying Bose±Einstein statistics, the entropy obtained is convention-

ally called the bosonic entropy. If the quantum mechanical geometric entropy

is calculated by counting the fermionic particle states, the corresponding
entropy is called the fermionic entropy.

Recently, such problems have attracted much interest (’ tHooft, 1985;

Solodukin, 1995a,b; Ghosh and Mitra, 1994, 1995; Russo, 1995; Fila et al.,
1994; de Alwis and Ohta, 1995; Zhou et al., 1995; Hawking, 1995; Ichinose

and Satoh, 1995; Larsen and Wilczek, 1996; Shen et al., 1997); different
approximations have been used to study the quantum corrections to the

entropy in various black hole backgrounds.

In this paper, we shall solve directly the Klein±Gordon equation and

Dirac equation in (1 1 1) dimensional black hole backgrounds with ’ tHooft

and ª quasiperiodicº boundary conditions and calculate the corresponding

bosonic entropy and fermionic entropy, respectively. The results show that
the fermionic entropy has completely the same divergence form as that of

bosonic entropy, except that the coefficient is different.

2. THE BOSONIC ENTROPY OF A (1 1 1)-DIMENSIONAL
BLACK HOLE

The following metric is taken for the black hole (Achuarro and Ortiz,

1993):

dS 2 5 N 2dt2 2
1

N 2 dr 2 (1)

where

N 2 5 2 M 1
r 2

l2 1
J 2

4r 2 , 2 ` , t , 1 ` , 0 , r , 1 `
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M and J are both integral constants, l is a constant concerned with the

cosmological constant: l 2 2 5 2 L , and L is the negative cosmological con-

stant. The horizons of the black hole are given by

r 2
6 5

1

2
Ml2 H 1 6 F 1 2 1 J

Ml 2
2

G
1/2

J (2)

Here it is defined that J , Ml. The surface gravity of the black hole is

k 5
r 2

1 2 r 2
2

r+l
2 (3)

Considering the massless scalar field wave equation in the background space-

time (1), which is

1

! 2 g
- m ( ! 2 gg m n - n c ) 5 0 (4)

and substituting (1) into (4), one has

1

N 2

- 2 c
- t2

2
-
- r 1 N 2 - c

- r 2 5 0 (5)

Let

c (t, r) 5 U(r)exp( 2 iEt) (6)

Using (6), one can obtain from (5)

1

N 2 E 2U 1
-
- r 1 N 2 - U

- r 2 5 0 (7)

Let

dy 5
dr

N 2 (8)

One then has

2
- 2U

- y2 5 E 2U (9)

Hence we have

U(y) 5 exp( 6 iEy) (10)
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From (8) we have

y 5 4l2 ln F 1 4r 2 ) g )
4r 1 ) g ) 2

2
! ) g )
4h 1 4r 2 ) f )

4r 1 ) f ) 2
! ) f )
4h G (11)

Here

h 5 4Ml2 ! 1 2 1 J

Ml 2
2

, f 5 2 2Ml2 F 1 1 ! 1 2 1 J

Ml 2
2 G ,

g 5 2 2Ml2 F 1 2 ! 1 2 1 J

Ml 2
2 G

Using the ’ tHooft boundary condition

U(r+ 1 d ) 5 U(r+ 1 L) (12)

one thus has the eigensolution

U(r) 5 sin 5 l2

h
E ln 3 1

4r 2 ) g )
4r 1 ) g )

4r 1 1 4 d 2 ) g )
4r+ 1 4 d 1 ) g ) 2

2 = ) g )

? 1
4r 2 ) f )
4r 1 ) f )

4r 1 1 4 d 2 ) f )
4r+ 1 4 d 1 ) f ) 2

= ) f )

4 6 (13)

Since

4r+ 1 4 d 2 ) g ) 5 4Ml2 F 1 2 1 J

Ml 2
2 G

1/2

1 4 d

4r+ 1 4 d 1 ) g ) 5 4Ml2 1 4 d (14)

4r+ 1 4 d 2 ) f ) 5 4 d

4r+ 1 4 d 1 ) f ) 5 4Ml2 H 1 1 F 1 2 1 J

Ml 2
2

G
1/2

J 1 4 d
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(13) can be written as

U(r) 5 sin 5 l2

h
E ln 3 1

4r 2 ) g )
4r 1 ) g )

Ml2 F 1 2 1 J

Ml 2
2

G
1/2

1 d

Ml2 1 d 2
2 = ) g )

? 1
4r 2 ) f )
4r 1 ) f )

d

Ml2 H 1 1 F 1 2 1 J

Ml 2
2 G

1/2

J 1 d 2
= ) f )

4 6 (15)

while the eigenvalue is

l2

h
E ln W 5 n(E ) p (16)

with W defined to be

W 5 F 1 Ml2 F 1 2 1 J

Ml 2
2

G
1/2

1 L

Ml2 1 L

Ml2 F 1 2 1 J

Ml 2
2

G
1/2

1 d

Ml2 1 d 2
2 = ) g )

? 1
L

Ml2 H 1 1 F 1 2 1 J

Ml 2
2

G
1/2

J 1 L

d

Ml2 H 1 1 F 1 2 1 J

Ml 2
2

G
1/2

J 1 d 2
= ) f )

G
According to the standard statistical approach, the free energy of the

scalar field is
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b F 5 o
n

ln[1 2 e 2 b E(n)]

5 2 b # dE
n(E )

e b E 2 1
(17)

Here b 5 1/kBT, T is the Hawking temperature, and kB is the Boltzmann
constant.

By direct calculation one obtains

F 5 2
p

6 b 2

l2

h
ln W (18)

The entropy corresponding to (18) is

Sb 5 b 2 - F

- b

5
l2

h
ln W (19)

Substituting b 5 1/kBT, T 5 k /2 p kB, k 5 (r 2
1 2 r 2

2 )/r+l2 into (19),

one gets

Sb 5
1

24r+

ln W (20)

Here Sb is just the bosonic entropy of the black hole, the metric of which is

given in (1), d is the ultraviolet cutoff, and L is the infrared cutoff.

3. THE FERMIONIC ENTROPY OF A (1 1 1)-DIMENSIONAL
BLACK HOLE

In this section, we calculate the fermionic entropy of the black hole,

the metric of which is given in (1).
Let us consider massless spinor particles with two complex components

in (1 1 1)-dimensional space-time. The action is (Solodukhin, 1995c; Mielke

et al., 1993)

If 5 # i

2
e abe

a Ù ( c g b ¹ c 2 ¹ c g b c ) (21)

Here ea 5 ea
m dx m , a 5 0, 1. The 2-dimensional metric of the curved surface

}2 can be written as g m n 5 ea
m eb

n h ab, while h ab 5 ( 1 1, 2 1); the Lorentz

connection 1-form is v a
b 5 v e a

b, v 5 v m dx m , while e ab 5 e ba, e 01 5 1. The

matrix g a satisfies the relationships
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g 0 5 1 0 1

1 0 2 , g 1 5 1 0 1

2 1 0 2 , g 5 5 g 0 g 1 5 1 2 1 0

0 1 2 (22)

and

g a g 5 1 g 5 g a 5 0

In 2-dimensional complex spinor space, a covariant spinor derivative ¹ ,

which is a differential operator acting on the c field, can be defined as

¹ c 5 d c 1 1±2 v g 5 c , ¹ c 5 d c 2 1±2 v c g 5 (23)

Using the calculus of variations for (21), one obtains the fermion field

equation as

e ab[e
a Ù g bd c 2 d(ea g b c )] 5 0 (24)

Let

c (t, r) 5 exp( 2 iEt) 1 c 1

c 2 2 (25)

Using (1) and (25), we find that (24) becomes

N 2 d c 1

dr
1

1

4

dN 2

dr
c 1 1 iE c 1 5 0 (26)

N 2
d c 2

dr
1

1

4

dN 2

dr
c 2 2 iE c 2 5 0 (27)

From (26) and (27), we get the following eigensolutions:

c 1 5 C1 F 2 M 1
r 2

l2
1

J 2

4r 2 G
2 1/4

exp H 2 iE
l2

h
ln F 1 4r 2 ) g )

4r 1 ) g ) 2
2 = ) g )

? 1 4r 2 ) f )
4r 1 ) f ) 2

= ) f ) G J (28)

c 2 5 C2 F 2 M 1
r 2

l2
1

J 2

4r 2 G
2 1/4

exp H iE
l2

h
ln F 1 4r 2 ) g )

4r 1 ) g ) 2
2 = ) g )

? 1 4r 2 ) f )
4r 1 ) f ) 2

= ) f ) G J (29)
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Here C1, C2 are integral constants.

In order to calculate the fermionic entropy of the black hole, the so-

called ª quasiperiodicº boundary condition is introduced (Zhou et al., 1995),

! N c j ) r1 1 d 5 ! N c j ) r 1 1 L, j 5 1, 2 (30)

On the other hand, it is required that the phase factor of the fermionic

eigensolution must satisfy the periodicity condition, hence we get

l2

h
E ln W 5 2n p (31)

According to Fermi±Dirac statistics, the one-module partition function is

Z(n) 5 o
2

m 5 0

e 2 m b E(n)

5 (1 2 e 2 3 b E)(1 2 e 2 b E) 2 1 (32)

The free energy then is

F 5 2 b 2 1 o
n

ln[(1 2 e 2 3 b E(n))(1 2 e 2 b E(n)) 2 1] (33)

Since

b F 5 # ln F 1 2 e 2 b E(n)

1 2 e 2 3 b E(n) G dn(E)

the expression for the entropy is

S 5 b 2 - F

- b
(34)

and similarly to the bosonic case, we obtain

Sf 5
1

72r+

ln W (35)

Sf is just the fermionic entropy of the black hole whose metric is given in (1).

Comparing (36) with (20), it is obvious that the fermionic entropy and

the bosonic entropy have almost the same form, except that the coefficients

are different.
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